
Distributed systems - sinossi

Pagina 1

introduction
design goals

sharing of resources
distribution trasparency, apply to:

(data) access
location
relocation
migration
replication
concurrency
failure

being open
being scalable, how:

communication hiding
distribution of the algorithm
replica

srv replica
cache

types
distributed computing systems

cluster (high performance distributed computing)
grid

distributed information systems
TPS: distributed transaction processing; must be ACID:

atomicity: from outside transaction is seen indivisible
consistent: transaction doesn’t violate system invariants
isolated: concurrent transactions don’t interfere with each other
durable: once a transaction commits, the changes are permanent

EAI: enterprise application integration
pervasive systems

architectures

architectural styles (or software architectures): how relate components

layered architectures
Object-based (tight coupled)
Data-centered (data blackboard)
Event-based (bus architecture, loose coupled)
Shared-data space

system architecture (deployment)
centralized (client/server, vertical distribution, client type: thin/fat)

2/3 tired architecture
decentralized (peer to peer), horizontal distribution, servent)

overlay network

unstructured (folooding, superpeer)
hybrid architecture

processes
process: program running (managed by OS)

runtime system: uses OS of host
virtual machine monitor: uses hardware

clients: allow user interact with server
functional requirements

thin: User interface only
fat: ATM (automatic teller machine), TV set top box

non functional requirements requests:
location
migration
relocation
fault tolerance

servers: implement services used by users
types:

iterative: direct response to client

port: on catalog or known
superserver

connection state
stateless
statefull

server clusters
HCP: High computing performance
load balancing

Dispatcher + cluster (of replicas)
distributed servers using MIPv6

communication
foundations

layered protocols
application

application
presentation
session middleware
transport

OS
network
data link
physical

types of communication
persistent
transient
synchronous
asynchronous

synch.at request submission

distributed systems: "1. autonomous elaboration systems
2. that present themselves as a coherent system"

component: module erogating
and/or requesting services

structured (DHT: distributed hash table,
Direct acyclic graph, chord network)

thread: more instuction flows in a process
(managed by user)
virtualization: presenting an API (or system calls)
over another API (or system calls)

concurrent: pass the request to a worker
Thread/process

more channels to manage client commands to server
while service is working

Distributed systems - sinossi

Pagina 2

synch.at request delivery
RPC: remote procedure call

parameter passing
copy by value
copy by reference
call by copy/restore

Berkeley Socket
Message oriented communicztion

MPI: message passing interface
message queueing interface: put, get, poll, notify
message brokers

naming system: name <=> end point <=> entity <=> name
naming resolution system: returns the end point corresponding to a name
strategies to manage names / entity / endpoint

flat naming: by broadcasting / multicasting

home based: using MIPv6
distributed hyerarchical: DNS

recursive query: steps from component to component of DNS, final result to caller (not used)
iterative query: every step return to caller (usually used: it don’t drawn the DNS name server)

DHT: distributed hash table

clock synchronization
physical clocks

quarz timer
solar day
TAI: International Atomic Time (SI => UTC: Universal Time Coordinate)
GPS

clock synchronization algoritms
network time protocol
Berkeley Algorithm

Lamport’s logical clocks
totally ordered multicasting

Mutual exclusion
types:

token based
permission based

centralized algorithm
distributed algoritm (ricart and agrawala)
token-ring algorithm

election algorithm
the bully algorithm
a ring algorithm

consistency and replication
introduction:

reasons:
reliability (crash, corrupted data)
performance (in case of need to scale)

Data-centric consistency models

deviation in numerical values btwn replicas
deviation in staleness btwn replicas
deviation with respect to the ordering of update op.

Client-centric consistency models (Bayou:)

replica management
finding the best location
content replication and placement

permanent replicas
Server-initiated replicas
Client-initiated replicas

content distribution
what propagate:

only notification of an update (invalidation protocols)
transfer data btwn copies
send the update operation

pull vs push protocols
Push-based approach (server-based protocols)
Pull-based approach (client-based protocols)

unicasting vs multicating
consistency protocols

(not seen) continuous consistency
Primary-based protocols
Local-write protocols

naming: identifying end point of an entity
using a stable mnemonic name

forward pointers: when entity moves on, release a reference
To the new address

coordination, needed: 1.to access a resource
2. agree about events sequence

problem: keep all copies consistent requires global synchronization
(costly on WAN) => relax consistency constraints

continuous consistency

consistent ordering of operations
sequential consistency: “The result of any execution is the same as if the (read and write)
operations by all processes on the data store were executed in some sequential order
and the operations of each individual process appear in this sequence in the order specified by its program”
causal consistency: “Writes that are potentially causally related must be seen by all processes
in the same order. Concurrent writes may be seen in a different order on different machines”

eventual consistency: “data stores that have the property that in
the absence of write-write conflicts, all replicas will converge
toward identical copies of each other”

monotonic reads: (same process on data item x) “reads will always return the same value or a more recent value”
monotonic writes: (same process on data item x) “write completes before any successive write”
read your writes: (same process on data item x) “the effect of a write will always be seen by a successive read"
writes follow reads: (same process on data item x) “a write following a previous read take place on the same
or a more recent value than that was read”

Paxos: a consensus protocol by L.Lamport and others where
processes in error become to an halt. Decidability: 2*m+1
(m == num.of faulty systems)
Byzantine: a consensus protocol by L.Lamport and others where
processes in error comunicate values. Decidability: 3*m+1
(m == num.of faulty systems)

